Total Synthesis of (2S,3S,4R)-2-[(2'R)-2-Benzoyloxydocosanoylamino]-16-methylheptadecane-1,3,4,-triol 3,4-Dibenzoate, a Partially Protected Ceramide Part of Sponge Cerebrosides ${ }^{1}$

Hideki Nakashima, Norihiko Hirata, Takeru Iwamura, Yoshiro Yamagiwa and Tadao Kamikawa Department of Chemistry, Faculty of Science and Technology, Kinki University, Kowakae, Higashi-Osaka 577, Japan

Abstract

(2S,3S,4R)-2-[(2'R)-2-Benzoyloxydocosanoylamino]-16-methylheptadecane-1,3,4-triol 3.4-dibenzoate 32, a partially protected ceramide part of a cerebroside from the marine sponge Halichondria japonica, has been synthesized from L-ascorbic acid, and its absolute stereochemistry has been determined. The key steps in the synthesis include the regioselective ring opening of chiral epoxide 5 with a 2-alkyl-2-lithio-1.3-dithiane and the introduction of a hydroxymethylene synthon using Dondoni's protocol to assemble $\mathrm{C}(1)$ and $\mathrm{C}(2)$ functionality.

Sponges are known to have remarkable powers of regeneration and self-recognition. ${ }^{2}$ The cell-recognition processes have been assumed to be related to the sugar chains of cell-surface glycolipids and glycoproteins.

In 1991, Hayashi et al., ${ }^{3}$ showed that the main glycosphingolipid of the sponge Halichondria japonica was a ceramide digalactoside, Galal $\rightarrow 4 \mathrm{Gal} \beta 1 \rightarrow 1 \mathrm{Cer}$, by using ($\mathrm{FAB} / \mathrm{MS}$), IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The ceramide moiety was composed mainly of cis 4-hydroxyoctadecasphingosine and 2-hydroxydocosanoic acid. In the original paper, the stereochemistry of the lipid was not clear but it was inferred as having structure 1 from analogy with many cerebrosides isolated from marine organisms. Our continuing interest in the synthesis of naturally occurring lipids, coupled with our desire to establish the absolute structural assignment, led us to undertake the synthesis of the ceramide moiety 2. Although many synthetic methods for phytosphingosines have been described, ${ }^{4}$ this is the first report of the synthesis of ceramide $\mathbf{2}$ in optically pure form from I-ascorbic acid.

Results and Discussion

The synthetic strategy for assembling an appropriately functionalized precursor of phytosphingosine 3 was stereoselective ring opening of the epoxide 5 with a 2 -alkyl-2-lithio-1,3-dithiane C. For the later stages of the synthesis, the requisite consecutive stereochemistry A could be obtained by means of Dondoni's protocol ${ }^{5}$ via the thiazole 4. In our previous communication, ${ }^{6}$ we also reported the synthesis of optically active 2 -hydroxy fatty acid 6 from the epoxide 5 . A combination of substrates $\mathbf{3}$ and 6 can eventually yield the ceramide 2 (Scheme 1).

The achiral portion of compound 3 was synthesized from octane-1,8-diol 7 . Treatment of diol 7 with 47% hydrobromic acid in refluxing benzene ${ }^{7}$ led to the monobromide 8. Subsequent protection of the alcohol 8 with dihydropyran (DHP) and pyridinium toluene-p-sulfonate (PPTS) yielded the
pyranyl ether 9. Coupling of bromide 9 with isobutylmagnesium bromide in the presence of dilithium tetrachlorocuprate(II) $\left(0^{\circ} \mathrm{C}\right.$ to room temp.) ${ }^{8}$ followed by hydrolysis with toluene- p-sulfonic acid (PTSA) in methanol, provided the alcohol 10 in 75% yield from diol 7. Mesylation and bromination under standard conditions led to the bromide 11 in 87% yield from alcohol $\mathbf{1 0}$. Treatment of bromide 11 with 2-lithio-1,3-dithiane in the presence of hexamethylphosphoric triamide (HMPA) at $-78^{\circ} \mathrm{C}^{9}$ led to the 2-alkyl-1,3-dithiane 12 in 90% yield (Scheme 2).

3,4-Anhydro-1,2-O-isopropylidene-D-erythritol 5 was prepared by a modification of Abushanab's protocol ${ }^{10}$ from the diol 13, which was derived from l-ascorbic acid. The sequence began with the protection of the primary hydroxy group of diol 13 with pivaloyl chloride to give the pivalate 14 , which was then sulfonylated with m-nitrobenzenesulfonyl chloride (NsCl) to give the nisyl ester 15. By subsequent treatment with base, diester 15 was converted into the epoxide 5 in 39% overall yield from diol 13. The stereoisomeric purity ($>99 \%$) of epoxide 5 was confirmed by both ${ }^{1} \mathrm{H}$ NMR spectroscopy and the opticalrotation value ${ }^{11}$ (Scheme 3).

Treatment of epoxide 5 with the 2-alkyl-2-lithio-1,3-dithiane derived from compound 12 at $-78^{\circ} \mathrm{C}$ led to the 2,2-dialkylated 1,3-dithiane 16 in 80% yield. Reductive desulfurization of compound 16 with Raney Ni afforded the alcohol 17. Transacetalization of this compound was carried out by a reaction sequence (1 , acidic hydrolysis; 2 , protection of primary hydroxy group; 3, ketalization; and 4, basic hydrolysis of the pivalate) which gave the primary alcohol 18 in 55% yield from compound 16. Swern oxidation ${ }^{12}$ of primary alcohol 18 afforded the aldehyde 19 in 97% yield (Scheme 4).

With the aldehyde 19 in hand, we focused our efforts on creating a new chiral hydroxymethylene centre according to the Dondoni protocol. ${ }^{5}$ Treatment of aldehyde 19 with 2(trimethylsilyl)thiazole (2-TST) 4 afforded the highly diastereoselective adduct, which on desilylation gave (Scheme 5) the pure anti-2-(α-hydroxyalkyl)thiazole 20 (d.e. $>98 \%$ from ${ }^{1} \mathrm{H}$ NMR

$2 \mathrm{R}=(2 \mathrm{R}) \cdot \mathrm{Me}\left[\mathrm{CH}_{2}\right]_{19} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}-\mathrm{C}$
$3 \mathrm{R}=\mathrm{H}$
$3 \mathrm{R}=\mathrm{H}$

A
\downarrow

4

B

6

5
L-ascorbic acid

Scheme 1

Scheme 2 Reagents: i, $47 \% \mathrm{HBr}, \mathrm{PhH}$; ii, DHP, PPTS; iii, $\mathrm{Bu}^{i} \mathrm{MgBr}$, $\mathrm{Li}_{2} \mathrm{CuCl}_{4}$, THF; iv, PTSA, MeOH; v, MsCl, py, DMAP; vi, LiBr, $\mathrm{Me}_{2} \mathrm{CO}$; vii, 1,3-dithiane, BuLi, HMPA, THF
spectroscopy). This high diastereoselectivity (d.e. = diastereoisomeric excess) is attributed to the tight transition state \mathbf{D} which discriminates the diastereotopic face of the aldehyde. ${ }^{5}$ The stereochemistry of compound 20 was assigned as being $\mathrm{C}(1)-\mathrm{C}(2)$ anti from the proposed mechanism and the coupling constants ($J_{1,2} 8.5 \mathrm{~Hz}, J_{2,3} 5.5 \mathrm{~Hz}$). Unfortunately, this compound possessed an undesirable configuration at $\mathrm{C}(1)$ which prevented continuation of the synthetic procedure. Initial attempts to invert the configuration by a modified Mitsunobu reagent ${ }^{13}$ (m-nitrobenzoic acid- $\mathrm{Ph}_{3} \mathrm{P}$-diisopropyl azodicarboxylate) were fruitless, owing to severe steric hindrance to the incoming carboxylate anion \mathbf{E}.

We therefore adopted a more lengthy strategy involving oxidation and reduction. The alcohol 20 was oxidized to the ketone 21 by using Swern conditions. ${ }^{12}$ Reduction of ketone 21 with various metal hydrides in methanol was tried, and the results are shown in Table 1. The best result was obtained by reduction with NaBH_{4} (0.5 molar equiv.) in the presence of cerium(III) chloride (2 molar equiv.) ($\mathbf{2 2 : 2 0} 85: 15$) (Scheme 6). The formation of the $\mathrm{C}(1)-\mathrm{C}(2)$ syn-product 22 can be rationalized based on the transition-state model \mathbf{F} by assuming that complexation of cerium ion occurs between the O atom of

Scheme 3 Reagents: i, ref. 9; ii, PivCl, py, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, NsCl , py, DMAP; iv, $\mathrm{KOH}, \mathrm{MeOH} . \mathrm{Piv}=\mathrm{Me}_{3} \mathrm{CCO}-\mathrm{Ns}=m$-nitrobenzenesulfonyl
the isopropylidene group and the N atom of the thiazole ring and that the hydride attacks from the less hindered side.

It is noteworthy that the addition of strontium chloride completely reversed the selectivity ($\mathbf{2 2 : 2 0 7 : 9 3)}$) In this case, the transition model \mathbf{G} is the more favoured because strontium ion would have less affinity towards the nitrogen atom compared with the oxygen atom. The hydride would attack the carbonyl carbon atom from the direction shown by the arrow.

Scheme 4 Reagents: i, BuLi, HMPA, THF, 12, $-78^{\circ} \mathrm{C}$; ii, Raney Ni, EtOH; iii, PTSA, MeOH; iv, PivCl, py; v, $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{PPTS}, \mathrm{PhH}$; vi, $\mathrm{LiOH}, \mathrm{MeOH}$; vii, $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$

Scheme 5 Reagents: i, 2-(trimethylsilyl)thiazole 4, THF;ii, TBAF, THF

D

E

These two diastereoisomers could be easily separated by flash chromatography. That the major product had the desired configuration at $\mathrm{C}(1)$ was finally confirmed by derivation to the phytosphingosine 30 and by the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 22 ($J_{1,2} 2.7 \mathrm{~Hz}$: syn).

The remaining task of introducing the nitrogen function was achieved by the following sequence of reactions. Protection of the alcohol 22 as the p-methoxybenzyl (PMB) ether 23, and subsequent methylation, reduction and hydrolysis of the thiazole moiety ${ }^{14}$ provided an aldehyde, which on reduction with sodium boranuide (sodium borohydride, NaBH_{4}) afforded the alcohol 24 in 61% yield from the heterocycle 22. Deprotection of compound 24 with PTSA in methanol followed by standard benzylation afforded the tris(benzyl ether) 25 (96%). Selective debenzylation of tetraether 25 with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ water (20:1) led to the monoalcohol 26 (84%). Final conversion of the alcohol 26 into the phytosphingosine $\mathbf{2 8}$ commenced with mesylation and azidation $\left[\mathrm{LiN}_{3}\right.$, dimethylformamide (DMF),

Scheme 6 Reagents: i, $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ ii, NaBH_{4}, $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, MeOH

Table 1 Reduction of compound 21 with various metal hydrides*

Reagent	Product ratio $22: 20$	Combined yield (\%)
$\mathrm{NaBH}_{4}-\mathrm{SrCl}_{2}$	7:93	89
K-Selectride	13:87	94
NaBH_{4}	28:72	100
LiBH_{4}	29:71	79
L-Selectride CaCl_{2}	46:54	43
$\mathrm{NaBH}_{4}-\mathrm{CaCl}_{2}\left(-15{ }^{\circ} \mathrm{C}\right)$	49:51	93
$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$	53:46	72
L-Selectride	54:46	82
$\mathrm{NaBH}_{4}-\mathrm{CaCl}_{2}\left(0^{\circ} \mathrm{C}\right)$	67:33	99
$\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	85:15	96

* Reactions were carried out at room temperature, unless otherwise stated, in methanol. Product ratios were estimated from NMR spectra.
$90-100^{\circ} \mathrm{C}$] to afford the azide 27 in 80% yield. Reduction of azide 27 with lithium aluminium hydride in tetrahydrofuran (THF) afforded the amine $\mathbf{2 8}$ in 71% yield (Scheme 7). We are convinced that our synthetic product 28 is identical in stereochemistry with that of the natural lipid but were unable to secure a sample or the original spectra of compound 1 and could not make a direct comparison. We next prepared the well documented, structurally similar phytosphingosine 29 via similar methodology. Reductive deprotection of compound 29 with sodamide (sodium in liquid ammonia), followed by acetylation provided the acetamide triacetate $\mathbf{3 0}$ identical in all respects with the reported data ($[\alpha]_{\mathrm{D}}, \mathrm{IR},{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR). ${ }^{15}$ Based on the congruity of the spectral data in Table 2 and the assumed biogenesis of phytosphingosines, we propose that the absolute stereochemistry of the 4-hydroxyisooctadecasphingosine should be that of compound 28.

Having successfully prepared compound 28, we proceeded to complete the synthesis of our target ceramide by amidation of compound 28 with ($2 R$)-benzoyloxydocosanoic acid, which had been prepared from L-ascorbic acid. ${ }^{6}$ Treatment of the mixture

Table 2 Spectral data for compounds 28 and 29

	28	29
$[x]_{\mathrm{D}}^{20}$	$-6.50\left(c 1.02, \mathrm{CHCl}_{3}\right)$	$-6.66\left(c 0.90, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR $2-\mathrm{H}$	$3.15(\mathrm{ddd}, J 7.0,6.8,3.0)$	$3.19(\mathrm{ddd}, J 7.5,6.5,3.5)$
$1-\mathrm{H}$	$3.48(\mathrm{dd}, J 8.9,7.0)$	$3.51(\mathrm{dd}, J 9.0,7.5)$
$3-\mathrm{H}$	$3.55(\mathrm{dd}, J 6.8,3.2)$	$3.59(\mathrm{dd}, J 6.5,3.5)$
$1 '-\mathrm{H}$	$3.68(\mathrm{dd}, J 8.9,3.0)$	$3.71(\mathrm{dd}, J 9.0,3.5)$
4-H	$3.68-3.75(\mathrm{~m})$	$3.71-3.74(\mathrm{~m})$
	$587(0.13)[\mathrm{M}]^{+}$	$587(0.23)[\mathrm{M}]^{+}$
EI-MS (\% Int. $)$	$522(0.44)$	$522(0.62)$
	$496(5.58)$	$496(6.46)$
	$466(3.22)$	$466(3.48)$
	$388(12.45)$	$388(5.53)$
	$239(7.11)$	$239(8.52)$
	$150(46.59)$	$150(49.84)$
	$91(100)$	$91(100)$

Scheme 7 Reagents: i, PMBCl, NaH, DMF; ii, MeI, MeCN; iii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; iv, $\mathrm{CuCl}_{2}, \mathrm{CuO}$, aq. MeCN ; v, PTSA, MeOH ; vi, $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{Bu}_{4} \mathrm{NI}, \mathrm{DMF}$; vii, DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-water; viii, MsCl , DMAP, py, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ ix, LiN_{3}, DMF; x, LiAlH_{4}, THF. PMB $=4$-methoxybenzyl.
of amine 28 and (2R)-benzoyloxydocosanoic acid with N -[3(dimethylamino)propyl] N^{\prime}-ethyl carbodiimide hydrochloride ($\mathrm{EDC} \cdot \mathrm{HCl})^{16}$ led to the ceramide 31 in 95% yield. Catalytic hydrogenation followed by tritylation, benzoylation and partial hydrolysis afforded the tribenzoate 32 (Scheme 8). The physical properties of compound 32 showed close similarity to those of the ceramide 33, which was obtained from the starfish Acanthaster planci. ${ }^{17}$

In conclusion, we believe that we have determined the absolute stereochemistry of the ceramide 1 as being that of compound 2 by means of its total synthesis, although direct
comparison with the authentic sample could not be done. The present synthesis should provide a versatile method for elaborating all possible stereoisomers by changing the starting material from L-ascorbic acid to D-isoascorbic acid.

Experimental

M.p.s were measured on a Yanagimoto apparatus (MP-S2) and are uncorrected. IR and UV spectra were recorded with a JASCO A-100 or Shimadzu FTIR-8100 spectrophotometer and a Shimadzu UV-2200 spectrophotometer, respectively. Optical rotations were taken on a Horiba SEPA-200 polarimeter, and $[\alpha]_{D}$-values are given in units of $10^{1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}{ }^{1}$. Mass spectra were recorded on a JEOL JMS-HX 100 spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 60,270 and 500 , and 68 and 126 MHz , respectively, on a Hitachi R-600L JEOL GSX270 and GX500 instrument. Tetramethylsilane was the internal standard, and J values are given in Hz. Merck silica gel (70-230 mesh) was used for column chromatography. Merck Fertigplatten F 254 were used for TLC. All moisture-sensitive reactions were carried out using standard syringe-septum techniques under argon. Benzene, THF and diethyl ether were distilled from benzophenone ketyl. Dry acetonitrile and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained by distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$. DMF and dimethyl sulfoxide (DMSO) were distilled over calcium hydride. Pyridine, $\mathrm{Et}_{3} \mathrm{~N}$ and diisopropylamine were distilled over KOH . Solutions were dried over MgSO_{4}.

8-Bromooctan-1-ol8.-A mixture of octane-1,8-diol 7 (7.31 g, 50.0 mmol) and 47% hydrobromic acid $\left(6.25 \mathrm{~cm}^{3}\right)$ in benzene ($100 \mathrm{~cm}^{3}$) was heated under reflux using a Dean-Stark water separator for 2 days with addition of 47% hydrobromic acid every $12 \mathrm{~h}\left(3 \times 6.25 \mathrm{~cm}^{3}\right)$. The reaction mixture was washed successively with water and aq. sodium hydrogen carbonate, dried, and evaporated. The crude product was purified by distillation under reduced pressure to afford monobromide $8(8.87 \mathrm{~g}, 85 \%)$ as an oil, b.p. $72.5-78.0^{\circ} \mathrm{C} / 266 \mathrm{~N} \mathrm{~m}^{-2}$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3330,1462,1440,1245,1055$ and $720 ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14-2.17(13 \mathrm{H}, \mathrm{m}), 3.40(2 \mathrm{H}, \mathrm{t}, J 6.6)$ and 3.63 ($2 \mathrm{H}, \mathrm{t}, J 6.0$).

1-Bromo-8-(tetrahydropyran-2-yloxy)octane 9.-To a solution of monoalcohol $8(8.87 \mathrm{~g}, 42.4 \mathrm{mmol})$ and PPTS $(0.25 \mathrm{~g}$, 0.995 mmol) in dichloromethane ($40 \mathrm{~cm}^{3}$) was added a solution of 3,4-dihydro-2 H -pyran (DHP) $\left(4.64 \mathrm{~cm}^{3}, 50.9 \mathrm{mmol}\right)$ in dichloromethane ($20 \mathrm{~cm}^{3}$). After being stirred at room temperature for 2 h , the solution was washed successively with saturated aq. sodium hydrogen carbonate and brine, dried, and evaporated. The crude product was purified by column chromatography on silica gel [elution with benzene-AcOEt (98:2)] to give bromo ether 9 as an oil ($11.3 \mathrm{~g}, 91 \%$);

$1070,1040,720$ and $675 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J$ $5.4), 1.25-1.94(17 \mathrm{H}, \mathrm{m})$ and $3.39(2 \mathrm{H}, \mathrm{t}, J 6.6)$.

2-(10'-Methylundecyl)-1,3-dithiane 12.-A solution of BuLi $\left(1.63 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $7.4 \mathrm{~cm}^{3}, 12.0 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $1,3-$ dithiane ($1.38 \mathrm{~g}, 11.5 \mathrm{mmol}$) in dry THF ($26 \mathrm{~cm}^{3}$) under argon. The resulting solution was maintained at $-20^{\circ} \mathrm{C}$ for 2 h and was then re-cooled to $-70^{\circ} \mathrm{C}$. To the mixture was added HMPA ($2.4 \mathrm{~cm}^{3} ; 13.7 \mathrm{mmol}$), followed by a solution of the bromide $11(2.86 \mathrm{~g}, 11.5 \mathrm{mmol})$ in THF ($12 \mathrm{~cm}^{3}$). The resulting suspension was allowed to warm to room temperature and was stirred for 12 h . Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the suspension and the resulting mixture was then extracted with hexane. The organic phase was dried and evaporated to leave a yellow liquid. Chromatography on silica gel with hexanebenzene ($9: 1$) as the eluent yielded the dithiane $12(2.99 \mathrm{~g}, 90 \%$) as an oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1465,1420,1380,1360,1275,1240$, $1180,1170,905,860$ and $720 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}$, $J 5.4), 1.25-2.10(21 \mathrm{H}, \mathrm{m}), 2.76-2.91(4 \mathrm{H}, \mathrm{m})$ and $4.03(1 \mathrm{H}, \mathrm{t}$, $J 6.6$).

1,2-O-Isopropylidene-4-O-pivaloyl-L-threitol 14.-Pivaloyl chloride ($3.9 \mathrm{~cm}^{3}, 31.6 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-15^{\circ} \mathrm{C}\right)$ solution of the diol $13^{9}(4.87 \mathrm{~g}, 30.1$ mmol) and dry pyridine ($2.7 \mathrm{~cm}^{3}$) in dry dichloromethane $\left(9 \mathrm{~cm}^{3}\right)$. After being stirred for 2 h at ambient temperature, the reaction mixture was diluted with dichloromethane and then was washed with aq. sodium hydrogen carbonate, dried and evaporated under reduced pressure to leave a liquid. Chromatography on silica gel with benzene-AcOEt (9:1) as the eluent yielded title compound $14(5.68 \mathrm{~g}, 77 \%)$ as an oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3475,1720,1480,1460,1380,1370,1280$, 1210,1160 and $850 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22(9 \mathrm{H}, \mathrm{s}), 1.38$ $(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 2.60\left(1 \mathrm{H}, \mathrm{br}\right.$ s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$ and $3.5-4.3(6 \mathrm{H}, \mathrm{m})$.

1,2-O-Isopropylidene-3-O-(m-nitrobenzenesulfonyl)-4-O-pi-valoyl-L-threitol 15.-A solution of m-nitrobenzenesulfonyl chloride ($6.13 \mathrm{~g}, 27.7 \mathrm{mmol}$) in dry dichloromethane $\left(6.4 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of the pivalate $14(5.68 \mathrm{~g}, 23.1$ mmol) 4-(dimethylamino) pyridine (DMAP) ($1.41 \mathrm{~g}, 11.5 \mathrm{mmol}$) and dry pyridine $\left(2.2 \mathrm{~cm}^{3}\right)$ in dry dichloromethane $\left(11 \mathrm{~cm}^{3}\right)$. The resulting suspension was stirred at room temperature for 24 h. The resulting solution was washed with aq. sodium hydrogen carbonate, dried, and concentrated under reduced pressure. After stripping with toluene, diester $15(9.95 \mathrm{~g}, 100 \%$) was obtained as a yellow oil; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3170,1720,1600,1520$, $1470,1450,1340,1270,1200,1180,1140,1060,910,720$ and 650 ; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21(9 \mathrm{H}, \mathrm{s}), 1.25(6 \mathrm{H}, \mathrm{s}), 3.5-4.5(5 \mathrm{H}, \mathrm{m})$, 4.7-5.1 $(1 \mathrm{H}, \mathrm{m})$ and $7.6-8.9(4 \mathrm{H}, \mathrm{m})$.

1,2-Anhydro-3,4-O-isopropylidene-D-erythritol 5.-A solution of diester $15(18.6 \mathrm{~g}, 45.2 \mathrm{mmol})$ in dry methanol $\left(20 \mathrm{~cm}^{3}\right)$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathrm{KOH}(2.98$ $\mathrm{g}, 43.0 \mathrm{mmol})$ in dry methanol $\left(40 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 2 h and was then evaporated under reduced pressure. The residue was triturated with diethyl ether and the resulting suspension was filtered. The organic phase was evaporated to leave a liquid. This was purified by distillation under reduced pressure to give epoxide $5(3.13 \mathrm{~g}$, 51%) as an oil; b.p. $85.6-90.0^{\circ} \mathrm{C} / 3200-3466 \mathrm{~N} \mathrm{~m}^{2} ;[\alpha]_{\mathrm{D}}^{16}$ -9.47 (c 1.13, EtOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 1380, 1370, 1220, 1160, 1060,900 and $845 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38(3 \mathrm{H.s}), 1.46(3 \mathrm{H}$, s), $2.66(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $2.6,1-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 4.0 , $1-\mathrm{H}^{\prime}$), 3.03 (1 H, ddd, $J 5.8,4.0$ and $2.6,2-\mathrm{H}$), 3.86 (1 H , ddd, J $6.2,5.8$ and $5.6,3-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $5.6,4-\mathrm{H})$ and 4.13 ($1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $6.2,4-\mathrm{H}^{\prime}$).
(2S,3R)-3-Hydroxy-1,2-isopropylidenedioxy-15-methylhexa-decan-5-one Trimethylene Dithioketal 16.-A solution of BuLi ($1.63 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $7.2 \mathrm{~cm}^{3}, 11.7 \mathrm{mmol}$) was added to a stirred and cooled ($-78^{\circ} \mathrm{C}$) solution of the dithioacetal 12 (3.10 $\mathrm{g}, 10.7 \mathrm{mmol}$) in dry THF ($95 \mathrm{~cm}^{3}$) under argon. The mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The solution was then cooled to $-40^{\circ} \mathrm{C}$. To the mixture were added HMPA ($2.0 \mathrm{~cm}^{3}, 11.7 \mathrm{mmol}$) and a solution of epoxide $5(1.41 \mathrm{~g}$, 9.75 mmol) in dry THF ($15 \mathrm{~cm}^{3}$). The resulting suspension was allowed to warm to room temperature and was stirred for 12 h . Aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the suspension and the resulting mixture was extracted with hexane. The organic phase was dried and evaporated to leave a yellow liquid. Chromatography on silica gel with benzene-AcOEt $(95: 5)$ as the eluent yielded title compound $16(3.36 \mathrm{~g}, 80 \%)$ as a pale yellow oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3450,1460,1420,1380,1365,1250,1210$ and $845 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.87(6 \mathrm{H}, \mathrm{d}, J 5.4), 1.25-2.27(23 \mathrm{H}$, $\mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 2.76-3.05(4 \mathrm{H}, \mathrm{m}), 3.44(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and 3.74-4.10 ($4 \mathrm{H}, \mathrm{m}$); m / z (EI) $432\left(\mathrm{M}^{+}, 27 \%\right), 417(26), 331$ (7.6), 287 (100), 263 (26), 231 (8.3), 205 (9.5), 187 (8.3), 175 (14), 130 (36), 101 (14) and 59 (27) (Found: $\mathrm{M}^{+}, 432.2708$. $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $\mathrm{M}, 432.2734$).
(2S,3R)-1,2-Isopropylidenedioxy-15-methylhexdecan-3-ol 17. -A stirred suspension of freshly prepared Raney Ni (W-2, 23.0 g) and the dithioketal 16 in ethanol ($60 \mathrm{~cm}^{3}$) was heated under reflux for 1 h and was then filtered through a pad of silica gel. The filtrate was evaporated to dryness under reduced pressure to leave the alcohol $17(1.43 \mathrm{~g}, 89 \%)$ as needles; m.p. $41.0-42.2{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-8.74\left(c \quad 1.01, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3511,1471,1383,1371,1266,1215,1051,862$ and $722 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 5.4), 1.10-1.60(23 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}$, s), $1.43(3 \mathrm{H}, \mathrm{s}), 2.01\left(1 \mathrm{H}\right.$, br s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.74-$ $3.82(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $3.86-4.07\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.2-\mathrm{H}\right)$; $\delta_{\mathrm{C}}(68$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $22.63,25.28,26.46,27.40,27.95,29.50,29.56$, 29.64, 29.69, 29.92, 32.60, 39.05, 64.45, 70.61, 78.67 and 108.88; m / z (EI) $327\left(\mathrm{M}^{+}-1,3 \%\right), 313(52), 285(7.1), 169(7.1), 101$ (100), 59 (32) and 43 (14) (Found: $\mathrm{M}^{+}, 328.2937 . \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{3}$ requires $\mathrm{M}, 328.2980$).

(2S,3R)-2,3-Isopropylidenedioxy-15-methylhexadecan-1-ol

 18.-A solution of the acetonide $17(2.24 \mathrm{~g}, 8.82 \mathrm{mmol})$ and PTSA ($0.259 \mathrm{~g}, 1.36 \mathrm{mmol}$) in methanol $\left(15 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h . The resulting solution was evaporated to dryness under reduced pressure and the residue was recrystallized from methanol to yield the corresponding triol $(1.86 \mathrm{~g})$.Pivaloyl chloride ($0.87 \mathrm{~g}, 7.09 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-17^{\circ} \mathrm{C}\right)$ solution of the above triol in pyridine $\left(16 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h , when brine was added. The mixture was extracted with diethyl ether and the organic phase was washed with hydrochloric acid (1 $\mathrm{mol} \mathrm{dm}{ }^{-3}$), dried, and evaporated. The residue was purified by column chromatography on silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($98: 2$) as the eluent to yield the corresponding $1-O$-pivalate $(1.64 \mathrm{~g}, 66 \%) ;[\alpha]_{\mathrm{D}}^{23}+6.35\left(c \quad 1.01, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3428, 1732, 1698, 1482, 1321, 1304, 1200, 1167, 1073, 924 and $722 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.23(9 \mathrm{H}, \mathrm{s}), 1.10-$ $1.58(23 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{br}$ s), $2.60(1 \mathrm{H}, \mathrm{br}$ s), $3.65(1 \mathrm{H}$, ddd, J $9.0,5.0$ and $3.5,3-\mathrm{H}), 3.75(1 \mathrm{H}$, ddd, $J 6.0,5.0$ and $4.5,2-\mathrm{H}), 4.23$ $(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $6.0,1-\mathrm{H}$) and 4.26 ($1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $4.5,1-$ $\left.\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{c}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.64,25.82,27.18,27.40,27.96$, $29.55,29.58,29.65,29.70,29.93,32.34,38.89,39.05,65.51,72.51$ and 179.24 .
To a solution of the above $1-O$-pivalate ($2.51 \mathrm{~g}, 6.73 \mathrm{mmol}$) and 2,2-dimethoxypropane ($2.5 \mathrm{~cm}^{3}, 20.2 \mathrm{mmol}$) in benzene (45 cm^{3}) was added a catalytic amount of PPTS. The resulting solution was stirred and heated under reflux for 30 min before
aq. sodium hydrogen carbonate was added. The mixture was extracted with hexane-diethyl ether, dried, and evaporated to yield the corresponding 2,3-O-isopropylidene-1-O-pivalate (2.68 $\mathrm{g}, 97 \%$) as an oil; $[\alpha]_{\mathrm{D}}^{22}-10.07\left(c 1.25, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1735,1460,1380,1370,1160$ and $860 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86$ ($6 \mathrm{H}, \mathrm{d}, J 6.5$), $1.21(9 \mathrm{H}, \mathrm{s}), 1.11-1.64(23 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s})$, $1.44(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $6.5,1-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{dd}, J$ 10.8 and $\left.5.4,1-\mathrm{H}^{\prime}\right), 4.10-4.18(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $4.21(1 \mathrm{H}, \mathrm{dt}, J$ 11.3 and $5.4,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.65,25.61,26.62$, 27.17, 27.41, 27.96, 28.15, 29.08, 29.47, 29.56, 29.63, 29.70, $29.93,38.72,39.06,63.03,75.27,77.27,108.14,128.32$ and 178.24 [Found: (EI) $\mathrm{M}^{+}, 412.3570 . \mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{4}$ requires M , 412.3555].

A solution of above 2,3-O-isopropylidene-1-O-pivalate (2.68 $\mathrm{g}, 6.49 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.409 \mathrm{~g}, 9.47 \mathrm{mmol})$ in methanol ($30 \mathrm{~cm}^{3}$) was stirred and heated at $50^{\circ} \mathrm{C}$ for 3 h . The resulting mixture was evaporated to dryness under reduced pressure to leave the alcohol $18(2.12 \mathrm{~g}, 100 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{23}-18.84$ (c $2.50, \mathrm{CHCl}_{3}$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3420,1460,1375,1360,1240$, 1210, 1040 and $840 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5)$, $1.12-1.62(23 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.97(1 \mathrm{H}, \mathrm{dd}, J$ 7.5 and $5.0, \mathrm{OH}), 3.56-3.64\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right)$ and $4.11-4.18(2 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 22.62, 25.53, 26.66, 27.39, $27.94,28.26,28.86,29.48,29.54,29.61,29.64,29.68,29.92,39.04$, $61.83,77.95,107.99$ and 128.29 [Found: (EI) $\left(\mathrm{M}^{+}-1\right)$ 327.2869. $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{3}$ requires $\left.m / z 327.2899\right]$.
(2R,3R)-2,3-Isopropylidenedioxy-15-methylhexadecanal 19. -To a solution of oxalyl dichloride ($0.35 \mathrm{~cm}^{3}, 3.65 \mathrm{mmol}$) in dry dichloromethane ($6 \mathrm{~cm}^{3}$) maintained at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO $\left(0.84 \mathrm{~cm}^{3}, 11.9 \mathrm{mmol}\right)$ in dichloromethane ($3 \mathrm{~cm}^{3}$) and the mixture was stirred for 15 min . The above alcohol $18(1.00 \mathrm{~g}, 3.04 \mathrm{mmol})$, dissolved in dichloromethane ($5.5 \mathrm{~cm}^{3}$), was added dropwise and the mixture was stirred for 15 min . Triethylamine ($2.1 \mathrm{~cm}^{3}, 15.2$ mmol) was added at $-50^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h , after which time it was allowed to warm to room temperature. The reaction mixture was then quenched with water and extracted with hexane-diethyl ether. The organic phase was dried, and evaporated under reduced pressure to leave the aldehyde $19(0.973 \mathrm{~g}, 97 \%)$ as a pale yellow oil.
(1R,2S,3R)-2,3-Isopropylidenedioxy-15-methyl-1-thiazol-2'$y l)$ hexadecan-1-ol 20 .--To a stirred solution of the aldehyde 19 $(0.973 \mathrm{~g}, 2.98 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of 2-(trimethylsilyl)thiazole $4\left(0.61 \mathrm{~cm}^{3}, 3.87 \mathrm{mmol}\right)$ in dry THF $\left(6.0 \mathrm{~cm}^{3}\right)$ at room temperature under argon. After the mixture had been stirred for 2 h , a solution of tetrabutylammonium fluoride (TBAF) ($0.935 \mathrm{~g}, 3.58 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) was added and the mixture was stirred for 30 min . The reaction mixture was poured into aq. sodium hydrogen carbonate and extracted with hexane-diethyl ether. The combined extracts were dried and evaporated to dryness. Chromatography on silica gel with benzene-AcOEt (95:1) as the eluent yielded title compound $20(1.06 \mathrm{~g}, 86 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{23}-11.63$ (c 1.01 , CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3300,1500,1460,1375,1360,1215$, 1050,860 and $720 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5)$, $1.10-1.80(23 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.16(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $5.5,2-\mathrm{H}), 4.28(1 \mathrm{H}$, ddd, $J 9.0,5.5$ and $4.0,3-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{d}, J 8.5,1-\mathrm{H}), 7.34\left(1 \mathrm{H}, \mathrm{d}, J 3.5,5^{\prime}-\mathrm{H}\right)$ and 7.74 ($1 \mathrm{H}, \mathrm{d}, J 3.5,4^{\prime}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.64,25.53$, $26.79,27.40,27.96,28.22,29.22,29.57,29.60,29.62,29.65,29.71$, $29.93,39.05,70.23,78.40,79.35,108.22,120.21,128.31,141.16$ and 170.89 [Found: (EI) $\mathrm{M}^{+} 411.2819(0.7 \%) . \mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{~S}$ requires M, 411.2807].
(2R,3R)-2,3-Isopropylidenedioxy-15-methyl-1-(thiazol-2'-yl)-heptadecan-1-one 21.-To a solution of oxalyl dichloride (0.61
$\mathrm{cm}^{3}, 6.32 \mathrm{mmol}$) in dry dichloromethane ($10.5 \mathrm{~cm}^{3}$) maintained at $-78{ }^{\circ} \mathrm{C}$ was added a solution of DMSO $\left(1.5 \mathrm{~cm}^{3}, 21.1 \mathrm{mmol}\right)$ in dichloromethane ($4 \mathrm{~cm}^{3}$) and the mixture was stirred for 15 min . The above alcohol $20(2.17 \mathrm{~g}, 5.27 \mathrm{mmol})$, dissolved in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$, was added dropwise and the mixture was stirred for 45 min . Triethylamine ($3.7 \mathrm{~cm}^{3}, 26.3 \mathrm{mmol}$) was added at $-50^{\circ} \mathrm{C}$ and stirring was continued for 30 min . The reaction mixture was quenched with water and extracted with hexane-diethyl ether. The organic phase was dried, filtered through a pad of silica gel, and evaporated under reduced pressure to leave the ketone 21 as a pale yellow oil ($2.13 \mathrm{~g}, 99 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1700,1480,1380,1370,1240,1220,1100,870$ and $750 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85(6 \mathrm{H}, \mathrm{d}, J 6.0), 1.10-1.60(23$ $\mathrm{H}, \mathrm{m}), 1.45(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 4.47-4.70(1 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{d}$, $J 7.2), 7.72(1 \mathrm{H}, \mathrm{d}, J 3.0)$ and $8.03(1 \mathrm{H}, \mathrm{d}, J 3.0)$.
(1S,2S,3R)-2,3-Isopropylidenedioxy-15-methyl-1-(thiazol-2'-yl)hexadecan-1-ol 22.-To a stirred suspension of the ketone $21(0.279 \mathrm{~g}, 0.678 \mathrm{mmol})$ and cerium(III) chloride $(0.505 \mathrm{~g}, 1.36$ $\mathrm{mmol})$ in methanol $\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(0.0128 \mathrm{~g}, 0.339$ mmol) portionwise and the resulting solution was stirred for 10 min at room temperature. The reaction was quenched by addition of 5% aq. citric acid and the resulting mixture was extracted with hexane-diethyl ether. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. Chromatography on silica gel with benzene-AcOEt ($9: 1$) yielded the (1 S)-alcohol $22(0.226 \mathrm{~g}, 96 \%$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}-31.67\left(c 1.02, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3520,3400,3200$, $1500,1460,1380,1360,1215,1040,870$ and $720 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.10-1.90(23 \mathrm{H}, \mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{s})$, $1.55(3 \mathrm{H}, \mathrm{s}), 3.35(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{OH}), 4.30(1 \mathrm{H}$, ddd, $J 9.5,6.2$ and 4.1, 3-H), $4.59(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and $2.7,2-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{dd}, J$ 5.9 and $2.7,1-\mathrm{H}), 7.30\left(1 \mathrm{H}, \mathrm{d}, J 3.0,5^{\prime}-\mathrm{H}\right)$ and $7.75(1 \mathrm{H}, \mathrm{d}, J 3.0$, $\left.4^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.62,24.78,26.79,27.11,27.37$, 27.92, 29.44, 29.51, 29.60, 29.64, 29.67, 29.90, 39.02, 70.49, $77.59,79.65,108.24,119.33,142.54$ and 173.11 [Found: (EI) $\mathrm{M}^{+}, 411.2818 . \mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.\mathrm{M}, 411.2807\right]$.
(1S,2R,3R)-2,3-Isopropylidenedioxy-1-(p-methoxybenzyl-oxy)-15-methyl-1-(thiazol-2'-yl)hexadecane 23.-To a stirred suspension of sodium hydride (60% dispersion; $0.0864 \mathrm{~g}, 3.59$ mmol, washed twice with dry hexane) in dry DMF ($2.5 \mathrm{~cm}^{3}$) was added a solution of the alcohol $22(1.23 \mathrm{~g}, 2.99 \mathrm{mmol})$ in dry DMF ($3.6 \mathrm{~cm}^{3}$) under argon. After the mixture had been stirred for 30 min at room temperature, $\mathrm{PMBCl}\left(0.49 \mathrm{~cm}^{3}, 3.59\right.$ mmol) was added at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at ambient temperature for 2 h . Aq. sodium hydrogen carbonate was added dropwise to the suspension and the resulting mixture was extracted with hexane-diethyl ether. The organic phase was washed successively with aq. sodium hydrogen carbonate and water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness under reduced pressure. Chromatography on silica gel with benzene$\operatorname{AcOEt}(95: 5)$ as the eluent yielded compound $\mathbf{2 3}$ as an oil; $[\alpha]_{\mathrm{D}}^{24}$ $-59.24\left(c 1.11, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1610,1515,1465,1380$, $1365,1245,1060,1040,820$ and $720 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86$ ($5 \mathrm{H}, \mathrm{d}, J 6.8), 1.08-1.80(23 \mathrm{H}, \mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s})$, $3.79(3 \mathrm{H}, \mathrm{s}), 3.99-4.18(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and 4.3 , $2-\mathrm{H}), 4.42(1 \mathrm{H}$, A part of ABq, $J 11.1$, benzylic H$), 4.55(1 \mathrm{H}, \mathrm{B}$ part of ABq, $J 11.1$, benzylic H), $4.80(1 \mathrm{H}, \mathrm{d}, J 4.3,1-\mathrm{H}), 6.86$ $(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}), 7.28(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{d}, J 3.0$, $\left.5^{\prime}-\mathrm{H}\right)$ and $7.76\left(1 \mathrm{H}, \mathrm{d}, J 3.0,4^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.62$, $25.94,26.55,27.15,27.37,27.92,29.15,29.41,29.50,29.53,29.62$, $29.68,29.90,39.02,55.16,70.94,77.37,77.61,79.97,108.79$, $113.63,120.37,128.27,129.47,129.55,141.94,159.20$ and 170.37 [Found: (EI) $\mathrm{M}^{+}, 531.3420 . \mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NO}_{4} \mathrm{~S}$ requires M , 531.3385]
(2R,3R,4R)-3,4-Isopropylidenedioxy-2-(p-methoxybenzyl-oxy)-16-methylheptadecan-1-ol 24.-Methyl iodide (1.7 cm^{3},
2.71 mmol) was added to a stirred solution of the thiazole $\mathbf{2 3}$ $(1.44 \mathrm{~g}, 2.71 \mathrm{mmol})$ in dry acetonitrile $\left(22 \mathrm{~cm}^{3}\right)$ under argon. The mixture was heated at $50^{\circ} \mathrm{C}$ for 48 h and was then evaporated to dryness under reduced pressure to leave a brown oil.
Sodium boranuide ($0.205 \mathrm{~g}, 3.25 \mathrm{mmol}$) was added portionwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the crude N-methylthiazolium salt in dry methanol ($20 \mathrm{~cm}^{3}$) and the resulting solution was stirred at room temperature for 30 min . The excess of reagent was destroyed by addition of acetone. The resulting suspension was evaporated to dryness to give an oily residue.
The crude product was dissolved in acetonitrile ($5 \mathrm{~cm}^{3}$) and to this solution was added a solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.546 \mathrm{~g}$, $3.20 \mathrm{mmol})$ and $\mathrm{CuO}(0.255 \mathrm{~g}, 3.20 \mathrm{mmol})$ in a mixture of acetonitrile ($15 \mathrm{~cm}^{3}$) and water ($1.5 \mathrm{~cm}^{3}$). The mixture was stirred for 30 min at room temperature, filtered through a pad of Celite, and then extracted with hexane-diethyl ether. The organic phase was washed with brine, dried, and evaporated to give the crude aldehyde $(0.965 \mathrm{~g})$.
A solution of the above aldehyde in methanol $\left(5 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{NaBH}_{4}(0.115 \mathrm{~g}, 3.04 \mathrm{mmol})$ at room temperature. After 30 min , the reaction was quenched by addition of 5% aq. citric acid, and the solvent was evaporated off. The residue was extracted with diethyl ether. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. Chromatography on silica gel with benzene-AcOEt (95:5) as the eluent yielded the alcohol $24(0.806 \mathrm{~g}, 61 \%)$ as a yellow oil; $[\alpha]_{D}^{22}+17.45\left(c 1.03, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3440,1610,1505$, $1460,1370,1360,1240,1210,1030$ and $820 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.10-1.70(23 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{s})$, $1.49(3 \mathrm{H}, \mathrm{s}), 2.34-2.41(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.50-3.64(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and}$ $2-\mathrm{H}), 3.70-3.80\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}^{\prime}\right), 3.80(3 \mathrm{H}, \mathrm{s}), 4.06(1 \mathrm{H}, \mathrm{ddd}, J$ $10.0,5.7$ and $3.0,4-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{dd}, J 5.7,3-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{A}$ part of ABq, $J 10.8$, benzylic H), $4.72(1 \mathrm{H}$, B part of ABq, J 10.8, benzylic H), $6.88(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$ and $7.31(2 \mathrm{H}, \mathrm{d}, J$ 8.4, ArH); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.63,25.92,26.23,27.38,27.71$, $27.93,29.53,29.56,29.63,29.66,29.69,29.90,39.03,55.20$, $62.34,72.00,77.14,77.26,79.09,108.32,113.77,128.29,129.37$, 130.55 and 159.19.
(2R,3R,4R)-1,2,3-Tribenzyloxy-2-(p-methoxybenzyloxy)octadecane 25.-A mixture of the alcohol $24(0.806 \mathrm{~g}, 1.68$ mmol) and PTSA ($0.032 \mathrm{~g}, 0.168 \mathrm{mmol})$ in methanol $\left(8.5 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h . After removal of the solvent, methanol $\left(5 \mathrm{~cm}^{3}\right)$ was added to the mixture and this was stirred for 1 h . The resulting mixture was evaporated to dryness under reduced pressure and the residue was partitioned between diethyl ether and aq. sodium hydrogen carbonate. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. Chromatography on silica gel with chloroform-methanol ($95: 5$) as the eluent yielded a triol (0.705 $\mathrm{g}, 96 \%) ;[\alpha]_{\mathrm{D}}^{25}-21.81\left(c 1.10, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1} 3320$, $1615,1588,1512,1470,1246,1076,1040$ and $819 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 7.0), 1.10-1.60(23 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.50-3.64(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H})$, 3.67-3.80 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $1-\mathrm{H}^{\prime}$), $3.80(3 \mathrm{H}, \mathrm{s}), 3.92$ ($1 \mathrm{H}, \mathrm{dd}, J$ 11.3 and $5.1,3-\mathrm{H}), 4.49(1 \mathrm{H}$, A part of ABq, $J 11.1$, benzylic H), $4.68(1 \mathrm{H}$, B part of ABq, $J 11.1$, benzylic H), $6.88(2 \mathrm{H}, \mathrm{d}, J 8.6$, $\mathrm{ArH})$ and $7.27(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.62$, $25.68,27.38,27.93,29.59,29.62,29.64,29.68,29.70,29.92$, $39.02,55.23,62.07,71.62,73.23,74.51,77.39,114.00,129.58$, 129.86 and 159.56 .

To a stirred suspension of sodium hydride $(60 \%$ dispersion; $0.091 \mathrm{~g}, 2.27 \mathrm{mmol}$, washed twice with dry hexane) in dry DMF $\left(2.6 \mathrm{~cm}^{3}\right)$ was added a solution of the above alcohol $(0.331 \mathrm{~g}$, 0.755 mmol) in dry DMF ($2.6 \mathrm{~cm}^{3}$) under argon. After being stirred for 1 h at $50^{\circ} \mathrm{C}$, the mixture was allowed to cool to room
temperature and then tetrabutylammonium iodide (TBAI) $(0.084 \mathrm{~g}, 0.226 \mathrm{mmol})$ and benzyl bromide $\left(0.36 \mathrm{~cm}^{3}, 3.02\right.$ $\mathrm{mmol})$ were added in one portion to the mixture. The resulting suspension was stirred at ambient temperature for 5 h . Aq. sodium hydrogen carbonate was added dropwise to the suspension and the resulting mixture was then extracted with hexane-diethyl ether. The organic phase was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. Chromatography on silica gel with benzene as the eluent yielded the tris(benzyl ether) $25\left(0.481 \mathrm{~g}, 90 \%\right.$) as a pale yellow oil; $[\alpha]_{D}^{24}$ $+3.84\left(c 1.04, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3050,3010,1600,1504$, $1460,1445,1240,1080,1060,1020,815,730$ and $690 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.8), 1.10-1.74(23 \mathrm{H}, \mathrm{m}), 3.48-3.68$ ($3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}$ and $4-\mathrm{H}$), $3.70-3.84(2 \mathrm{H}, \mathrm{m}, 2$ - and $3-\mathrm{H}$), 3.77 $(3 \mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}$, A part of ABq, $J 11.1$, benzylic H), $4.47(1 \mathrm{H}$, B part of ABq, $J 11.1$, benzylic H), $4.46(2 \mathrm{H}, \mathrm{s}$, benzylic H), 4.54 (1 H, A part of ABq, $J 11.1$, benzylic H), $4.61(1 \mathrm{H}, \mathrm{B}$ part of ABq, $J 11.1$, benzylic H), $4.64(1 \mathrm{H}, \mathrm{A}$ part of $\mathrm{ABq}, J 11.1$, benzylic H), $6.80(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.22(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$ and 7.24-7.36 ($15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.65$, $25.71,27.42,27.95,29.59,29.64,29.69,29.80,29.94 .30 .38,39.05$, $55.18,70.18,71.51,72.77,73.34,74.25,78.48,79.98,113.60$, $127.38,127.58,127.73,127.75,128.04,128.17,128.22,128.32$, 129.57, 130.88, 138.12, 138.78, 138.84 and $159.07 ; \mathrm{m} / \mathrm{z}$ (EI) 617 $\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, 2.3 \%\right.$), 587 (0.6), 509 (4.5), 481 (2.7), 356 (17), 267 (20), 211 (17), 181 (37), 163 (17), 137 (20), 121 (76) and 91 (100).
(2R,3S,4R)-1,3,4-Tribenzyloxy-16-methylheptadecan-2-ol 26.-DDQ $(0.200 \mathrm{~g}, 0.883 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the p-methoxybenzyl ether $25(0.481 \mathrm{~g}$, 0.679 mmol) in a mixture of dichloromethane ($5.2 \mathrm{~cm}^{3}$) and water $\left(0.3 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with dichloromethane and washed successively with aq. sodium hydrogen carbonate and brine, dried (MgSO_{4}), and evaporated to dryness. In order to remove the resulting p-methoxybenzaldehyde, the residue was reduced with NaBH_{4} in methanol before purification. Chromatography on silica gel with benzene-AcOEt $(98: 2)$ as the eluent yielded the monoalcohol $26(0.337 \mathrm{~g}, 84 \%)$ as an oil; $[x]_{\mathrm{D}}^{23}-10.22(c$ $1.06, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3460,3055,3020,1495,1460$, $1450,1360,1100,1060,730$ and $690 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86$ ($6 \mathrm{H}, \mathrm{d}, J 6.5$), 1.11-1.70 ($24 \mathrm{H}, \mathrm{m}$), 3.17 ($1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{OH}$), 3.54 $\left(2 \mathrm{H}, \mathrm{d}, J 5.7,1-\mathrm{H}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $3.0,3-\mathrm{H}), 3.68(1 \mathrm{H}$, ddd, $J 7.3$ and $4.3,4-\mathrm{H}), 4.04(1 \mathrm{H}$, tdd, $J 5.7,4.9$ and $3.0,2-\mathrm{H}$), $4.47(1 \mathrm{H}, \mathrm{A}$ part of ABq,$J 11.1$, benzylic H), $4.53(1 \mathrm{H}$, B part of ABq, $J 11.1$, benzylic H), $4.52(1 \mathrm{H}, \mathrm{A}$ part of ABq, $J 11.1$, benzylic H), 4.69 (1 H, B part of ABq, $J 11.1$, benzylic H), 4.54 (1 H, A part of ABq, $J 11.1$, benzylic H) and $7.23-7.34(15 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.65,25.58,27.41,27.95,29.59$, 29.67, 29.70, 29.93, 30.98, 39.05, 69.83, 71.07, 72.78, 73.34, $73.52,79.03,79.91,127.64,127.81,127.91,128.07,128.30$, $128.33,128.37,138.08,138.12$ and 138.27 ; m I (EI) 587 ($\mathrm{M}^{+}$$1,0.2 \%$), 497 (0.9), 391 (8), 359 (10), 299 (30), 253 (38), 181 (100), 153 (99), 148 (62), 104 (50) and 91 (99).

[^0]lithium azide $(0.140 \mathrm{~g}, 2.86 \mathrm{mmol})$ in dry DMF $\left(40 \mathrm{~cm}^{3}\right)$ was heated at $90-100^{\circ} \mathrm{C}$ for 48 h under argon. The cooled mixture was partitioned between hexane-diethyl ether and water. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure to leave a liquid. Chromatography on silica gel with hexane-benzene ($1: 1$) as the eluent yielded the azide $27(0.283 \mathrm{~g}, 80 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{22}+8.87\left(c 1.04, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3025,2095,1460,1450,1260,1100,1020,730$ and $690 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.2), 1.11-1.70(23$ $\mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{dt}, J 7.3$ and $3.8,2-\mathrm{H}), 3.63-3.82\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $3-$ and $4-\mathrm{H}), 4.50(1 \mathrm{H}$, A part of $\mathrm{ABq}, J 10.8$, benzylic H$)$, $4.55(1 \mathrm{H}, \mathrm{B}$ part of ABq, $J 10.8$, benzylic H$), 4.51(2 \mathrm{H}, \mathrm{s}$, benzylic H), $4.59(1 \mathrm{H}, \mathrm{A}$ part of $\mathrm{ABq}, J 10.8$, benzylic H), $4.69(1$ H, B part of $\mathrm{ABq}, J 10.8$, benzylic H) and $7.23-7.37(15 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.65,25.28,27.41,27.95,29.57$, $29.60,29.67,29.72,29.75,29.82,29.93,39.05,62.05,70.16,71.99$, $73.31,73.78,79.11,79.19,127.60,127.64,127.67,127.71,127.88$, $127.99,128.39,128.88,138.02$ and $138.32 ; m / z$ (EI) $585\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{N}_{2}, 0.7 \%\right), 571\left(\mathrm{M}^{+}-\mathrm{N}_{3}, 0.6\right), 494(17), 464(17), 386(11), 268$ (13), 181 (18), 163 (42), 148 (14) and 91 (100).
(2S,3S,4R)-2-Amino-1,3,4-tribenzyloxy-16-methylheptadecane 28.-A solution of the azide $27(0.283 \mathrm{~g}, 0.460 \mathrm{mmol})$ in dry THF ($3.0 \mathrm{~cm}^{3}$) was added to a suspension of $\mathrm{LiAlH}_{4}(0.042$ $\mathrm{g}, 1.11 \mathrm{mmol}$) in dry THF ($3.0 \mathrm{~cm}^{3}$). The resulting suspension was stirred for 30 min and was then heated under reflux for 1 h . The reaction was quenched by addition of a small amount of water (CARE!) and the resulting mixture was filtered. The filtrate was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. Chromatography on silica gel with chloroform-methanol ($95: 5$) as the eluent yielded the amine $28(0.193 \mathrm{~g}, 71 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{20}-6.50\left(c 1.02, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{1} 3360,3300,3020$, $1495,1460,1450,1360,1090,1065,730$ and $690 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}, J 6.8), 1.11-1.25(25 \mathrm{H}, \mathrm{m}), 3.15(1 \mathrm{H}, \mathrm{ddd}, J$ $7.0,6.8$ and $3.0,2-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and $7.0,1-\mathrm{H}), 3.68-3.15$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $3.2,3-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{dd}, J$ 8.9 and $\left.3.0,1-\mathrm{H}^{\prime}\right), 4.48(2 \mathrm{H}, \mathrm{s}$, benzylic H$), 4.52(1 \mathrm{H}$, A part of ABq, $J 11.1$, benzylic H), 4.68 ($1 \mathrm{H}, \mathrm{B}$ part of $\mathrm{ABq}, J 11.1$, benzylic H), $4.53(1 \mathrm{H}$, A part of ABq, $J 11.1$, benzylic H), 4.74 (1 H, B, part of ABq, $J 11.1$, benzylic H) and $7.26-7.37(15 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.65,25.83,26.55,27.40,27.95$, $29.63,29.67,29.70,29.82,29.93,30.38,39.05,52.55 .71 .95,72.87$, $73.23,73.56,77.21,80.07,81,67,126.89,127.47,127.52,127.58$, $127.75,127.80,127.87,128.28,128.34,128.49,138.35,138.61$ and 138.69 [Found: (EI) $\mathrm{M}^{+}, 587.4307 . \mathrm{C}_{39} \mathrm{H}_{57} \mathrm{NO}_{3}$ requires M , 587.4339].
(2S,3S,4R)-2-Amino-1,3,4-tribenzyloxyoctadecane 29.-Ву а similar sequence of reactions to those described for the preparation of compound 28, the amine 29 was obtained as an oil; $[\alpha]_{\mathrm{D}}^{21}-6.66\left(c 0.90, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3370,3300$, $3060,1495,1470,1455,1360,1090,1070$ and $1025 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.5), 1.20-1.74(26 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}$, br s, $\left.\mathrm{NH}_{2}\right), 3.19(1 \mathrm{H}$, ddd, $J 7.5,6.5$ and $3.5,2-\mathrm{H}), 3.51(1 \mathrm{H}$, dd, $J 9.0$ and $7.5,1-\mathrm{H}), 3.59(1 \mathrm{H}$, dd, $J 6.5$ and $3.5,3-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{dd}, J$ 9.0 and $\left.3.5,1-\mathrm{H}^{\prime}\right), 3.71-3.74(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.47(1 \mathrm{H}$, A part of $\mathrm{ABq}, J 11.3$, benzylic H), $4.49(1 \mathrm{H}, \mathrm{B}$ part of $\mathrm{ABq}, J 11.3$, benzylic H), 4.52(1 H, A part of ABq, $J 11.3$, benzylic H), 4.62 (1 H, B part of ABq, J 11.3, benzylic H), 4.54 (1 H, A part of ABq, J 11.3, benzylic H) 4.73 ($1 \mathrm{H}, \mathrm{B}$ part of ABq, J 11.3, benzylic H$)$ and $7.26-7.37(15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}(126 \mathrm{MHz}$; CDCl_{3}) 14.10, 22.67, 25.79, 29.62, 29.68, 29.81, 30.41, 31.90, $52.65,72.00,72.41,73.26,73.58,77.21,80.06,81.43,127.50$, $127.56,127.62,127.78,127.83,127.88,128.22,128.31,128.37$, 128.53, 138.29, 138.54 and 138.64 [Found: (EI) M ${ }^{+}, 587.4341$].
(2S,3S,4R)-2-[(2'R)-Benzyloxydocosanoylamino $]$-1,3,4-tri-benzyloxy-16-methylheptadecane 31.-A solution of EDC
hydrochloride $(0.0378 \mathrm{~g}, 0.197 \mathrm{mmol})$ in dry dichloromethane $\left(1.0 \mathrm{~cm}^{3}\right)$ was added to a solution of the amine $28(0.105 \mathrm{~g}, 0.179$ mmol) and ($2 R$)-benzoyloxydocosanoic acid $(0.0909 \mathrm{~g}, 0.197$ $\mathrm{mmol})$ in the same solvent $\left(2.0 \mathrm{~cm}^{3}\right)$ at room temperature under argon. After being stirred for 3 days, the mixture was evaporated to dryness. Chromatography on silica gel with benzeneAcOEt (98:2) as the eluent yielded amido ester $31(0.175 \mathrm{~g}$, 95%) as needles; m.p. $49.0-50.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{18}+5.33\left(c 1.16, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1} 3318,1734,1663,1551,1468,1452,1273,1253$, $1117,1102,739,708$ and $696 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(6 \mathrm{H}, \mathrm{d}$, $J 6.5), 0.87(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.20-1.70(59 \mathrm{H}, \mathrm{m}), 1.88-2.00(2 \mathrm{H}$, $\mathrm{m}), 3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 3.54(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $3.8,1-\mathrm{H}), 3.75(1$ $\mathrm{H}, \mathrm{dd}, J 7.8$ and $2.2,3-\mathrm{H}), 3.84\left(1 \mathrm{H}, \mathrm{dd}, J 9.2\right.$ and $\left.4.1,1-\mathrm{H}^{\prime}\right)$, 4.25 (1 H , dddd, $J 9.2,7.8,4.1$ and $3.8,2-\mathrm{H}), 4.35-4.50(5 \mathrm{H}, \mathrm{m}$, benzylic H), $4.75\left(1 \mathrm{H}, \mathrm{d}, J 9.2\right.$ benzylic H), $5.37\left(1 \mathrm{H}, \mathrm{t}, J 5.7,2^{\prime}-\right.$ H), $6.58(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{ArH}), 7.15-7.41(16 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.73(1$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.98-8.04(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $14.11,22.66,24.85,26.10,27.43,27.95,29.28,29.34,29.41$, $29.58,29.62,29.69,29.75,29.82,29.96,31.80,31.90,39.06$, $49.30,68.71,71.92,73.03,73.70,74.73,76.38,78.70,80.50$, $127.44,127.65,127.74,128.20,128.37,128.65,129.24,129.64$, $133.51,138.01,138.45,138.65,165.28$ and $169.52 ; m / z$ (EI) 1029 $\left(\mathrm{M}^{+}, 0.6 \%\right) .938(2.2), 830(5.0), 712(28), 622(32), 443(21), 335$ (6.2), 169 (11) and 91 (100) [Found: (FAB, +ve) 1030.7880 $\left(\mathrm{M}^{+}+1\right) \mathrm{C}_{6 \times} \mathrm{H}_{104} \mathrm{NO}_{6}$ requires $\left.m / z, 1030.7896\right]$.
(2S,3S,4R)-2-[(2'R)-Benzoyloxydocosanoylamino $]-3,4-$ di-benzoyloxy-16-methylheptadecan-1-ol 32.-A mixture of compound $31(0.175 \mathrm{~g}, 0.170 \mathrm{mmol}), 10 \% \mathrm{Pd}$ on carbon $(0.044 \mathrm{~g})$ and a trace of hydrochloric acid in THF ($4 \mathrm{~cm}^{3}$) was hydrogenated under hydrogen. The reaction mixture was filtered through a pad of Celite and the filtrate was evaporated to dryness. Chromatography on silica gel with chloroformmethanol ($95: 5$) as the eluent yielded a crystalline residue ($0.114 \mathrm{~g}, 88 \%$).

A mixture of the above residue $(0.070 \mathrm{~g}, 0.0921 \mathrm{mmol})$, trityl chloride $(0.257 \mathrm{~g}, 0.928 \mathrm{mmol})$ and DMAP $(0.011 \mathrm{~g}, 0.0921$ $\mathrm{mmol})$ in dry pyridine $\left(5.4 \mathrm{~cm}^{3}\right)$ was stirred at $65^{\circ} \mathrm{C}$ for 2.5 h . After the mixture had cooled it was stirred while benzoyl chloride ($0.13 \mathrm{~cm}^{3}$) was added. The resulting suspension was stirred at room temperature for 18 h . The reaction was then quenched by addition of methanol $\left(0.3 \mathrm{~cm}^{3}\right)$. After dilution with chloroform, the mixture was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. After stripping with toluene, the residue was dissolved in chloroform-methanol ($1: 1 ; 3 \mathrm{~cm}^{3}$), PTSA (0.035 g) and water (1 drop) were added and the resulting mixture was stirred at ambient temperature for 18 h . The resulting solution was washed with aq. sodium hydrogen carbonate, dried (MgSO_{4}), and evaporated to dryness. Chromatography on silica gel with benzene-AcOEt $(9: 1)$ yielded the alcohol $32(0.073 \mathrm{~g}, 82 \%)$ as an oil; $[\alpha]_{\mathrm{D}}^{21}+43.23(c 0.657$, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3300,1730,1651,1551,1468,1285$, $1246,1120,1070$ and $706 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85(6 \mathrm{H}, \mathrm{d}, J$ $6.5), 0.88(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.6-1.06(58 \mathrm{H}, \mathrm{m}), 1.8-2.1(4 \mathrm{H}, \mathrm{m}), 2.85$ $(1 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{OH}), 3.70\left(2 \mathrm{H}\right.$, br t , and $\left.1-\mathrm{H}_{2}\right), 4.44(1 \mathrm{H}$, tdd,$J 9.2$, 8.6 and $3.0,2-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{dt}, J 6.2$ and $2.4,4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{t}, J$ $\left.5.7,2^{\prime}-\mathrm{H}\right), 5.44(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $2.4,3-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{d}, J 9.2$, $\mathrm{NH}), 7.30-7.64(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.84-8.15(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.09,22.61,22.63,24.98,25.70,27.40$, $27.93,28.92,29.27,29.33,29.39,29.49,29.53,29.60,29.67,29.92$,
$31.89,31.98,39.03,50.32,61.52,73.66,73.85,74.75,77.20,128.30$, $128.42,128.59,128.96,129.41,129.63,129.76,129.90,129.94$, 133.02, 133.31, 133.69, 165.69, 166.07, 166.72 and 170.49 [Found: (FAB, +ve) $\left(\mathrm{M}^{+}+1\right), \quad 968.6972 . \mathrm{C}_{61} \mathrm{H}_{94} \mathrm{NO}_{8}$ requires $m / z, 968.6965$].

Acknowledgements

This work was supported in part by a Grant-in-Aid for Science Research from the Ministry of Education (Grant No. C-05640662), Science and Culture of Japan.

References

1 Presented at the 67th Annual Meeting of the Japan Chemical Society, March 31, 1994, Abstract Paper Vol. II, p. 855.
2 H. V. Wilson and J. T. Penny, J. Exp. Zool., 1930, 56. 73
3 A. Hayashi, Y. Nichimura and T. Matsubara, Biochim. Biophys. Acta, 1991, 1083, 179.
4 M. Prostenik, B. Majhofer-Orescanin, B. Ries-Lesic and N. Z. Stanacev, Tetrahedron, 1965, 21, 651; B. Weiss, Biochemistry, 1965, 4, 686; J. Gigg, R. Gigg and C. D. Warren, J. Chem. Soc. C, 1966, 1872; J. Gigg and R. Gigg, J. Chem. Soc. C, 1966, 1876; K. Sisido, N. Hirowatari and T. Isida, J. Org. Chem., 1969, 34, 3539; K. Sisido, J. Synth. Org. Chem. Jpn., 1971, 29, 161; A. Kisic, N. Z. Stanacev, Lj. Gospocic and M. Prostenik, Chem. Phys. Lips, 1971. 7. 135; W. Schwab and V. Jaeger, Angew. Chem., 1981, 93, 578; J. Mulzer and C. Brand, Tetrahedron, 1986, 42, 5961; R. R. Schmidt and T. Maier, Carbohydr. Res., 1988, 174, 169; S. Sugiyama, M. Honda and T. Komori, Liebigs Ann. Chem., 1988, 619; G. Guanti, L. Banfi and E. Narisano, Tetrahedron Lett., 1989, 30, 5507; A. Dondoni, G. Fantin, M. Fagagnolo and P. Pedrini, J. Org. Chem., 1990. 55, 1439; K. Akimoto, T. Natori and M. Morita, Tetrahedron Leit., 1993, 34, 5593.

5 A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, J. Org. Chem., 1989, 54, 693.

6 K. Yamagata, Y. Yamagiwa and T. Kamikawa, J. Chem. Soc., Perkin Trans. I, 1990, 3355.
7 S.-K. Kang, W.-S. Kim and B.-H. Moon, Synthesis, 1985, 1161.
8 M. Tamura and J. Kochi, Synthesis, 1971, 303; M. Schmid and R. Barner, Helv. Chim. Acta, 1979, 62, 464; N. Cohen, W. F. Eichel, R. J. Lopresti, C. Neukom and G. Saucy, J. Org. Chem., 1976, 41, 3505.

9 D. Seebach, Synthesis, 1969, 17; D. Seebach and E. J. Corey, J. Org. Chem., 1975, 40, 231.
10 E. Abushanab, P. Vemishetti, R. W. Leiby, H. K. Singh, A. B. Mikikilneni, D. C.-J. Wu, R. Saibaba and R. P. Panzica, J. Org. Chem., 1988, 53, 2598.
11 Y. L. Merrer, C. Gravier-Pelletier, J. Dumas and J. C. Depezay, Tetrahedron Lett., 1990, 31, 1003.
12 A. J. Mancuso, S. L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480.

13 S. F. Martin and J. A. Dodge, Tetrahedron Lett., 1991, 32, 3017.
14 A. Dondoni, F. Junquera, F. L. Merchan, P. Merino and T. Tejero, Tetrahedron Lett., 1992, 33, 4221.
15 Y. Kawano, R. Higuchi, R. Isobe and T. Komori, Liebigs Ann. Chem., 1988, 19.
16 T. Murase, H. Ishida, M. Kiso and A. Hawagawa, Carbohydr. Res., 1989, 188, 71.
17 S. Sugiyama, M. Honda and T. Komori, Liehigs Ann. Chem., 1990, 1063.

Paper 4/01966K
Received 31st March 1994 Accepted 24th May 1994

[^0]: (2S,3S,4R)-2-Azido-1,2,3-tribenzyloxy-16-methylheptadecane 27.-Methanesulfonyl chloride ($0.053 \mathrm{~g}, 0.687 \mathrm{mmol}$) was injected dropwise into a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the monoalcohol 26 ($0.337 \mathrm{~g}, 0.572 \mathrm{mmol}$) and DMAP (0.035 g , 0.286 mmol) in dry pyridine ($3.0 \mathrm{~cm}^{3}$). The resulting solution was stirred for 3 h at room temperature. Aq. sodium hydrogen carbonate was added to this mixture and the resulting mixture was extracted with hexane-diethyl ether. The organic phase was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. After stripping with toluene, the mesyl ester ($0.382 \mathrm{~g}, 100 \%$) was obtained as a pale yellow oil.

 A mixture of the above mesyl ester ($0.382 \mathrm{~g}, 0.572 \mathrm{mmol}$) and

